If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x^2+25=2
We move all terms to the left:
4x^2-20x^2+25-(2)=0
We add all the numbers together, and all the variables
-16x^2+23=0
a = -16; b = 0; c = +23;
Δ = b2-4ac
Δ = 02-4·(-16)·23
Δ = 1472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1472}=\sqrt{64*23}=\sqrt{64}*\sqrt{23}=8\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{23}}{2*-16}=\frac{0-8\sqrt{23}}{-32} =-\frac{8\sqrt{23}}{-32} =-\frac{\sqrt{23}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{23}}{2*-16}=\frac{0+8\sqrt{23}}{-32} =\frac{8\sqrt{23}}{-32} =\frac{\sqrt{23}}{-4} $
| 4t+3-t=-7+2+t | | x/5-x/2=-12 | | 8+7n=3+8n | | 9(3x+6)–6(7x–3)=12 | | -18+8h-19h=-6h+7 | | -3(-8+2n)=-n+34 | | 6x-15+4x=10x-15 | | -1(u-3)=5 | | 3.9(2.7p-1.4)=47.58 | | 12x-4x-x=2 | | 1+4k−2=−19−k | | 5x+25=2x+46 | | 2(y+4)+3(y+2)=y-4 | | -8(n-4)=-8n+32 | | 6q-6=18 | | -3x=9−3x=9 | | 10j=-36 | | -(x-4)+6x=14 | | 7x+42⁰=9X+6⁰ | | 14,000+160x=24,000-240x | | 3x-6=-3+5x | | 2(5x-20)=10+(x-20) | | -a+5=15 | | -2f=-15-f | | x+29=61 | | -5(v+4)=7v-8 | | -5(2x+8)=-16-10x | | (5y+3)+(4y+8)=34 | | 7x-3(x–1)=2(2x+3) | | -4(x-1)=2(x+8) | | -15w=-90 | | 3x=123x=12 |